

BANGALORE SAHODAYA SCHOOLS COMPLEX ASSOCIATION QUESTION PAPER (2023-24)PHYSICS (Code – 042) MARKING SCHEMECLASS XII –SET 1

Q.NO	SECTION A	Marks
1	(c) $F = F'or \frac{Q_1Q_2}{4\pi g_0 r^2} = \frac{Q_1Q_2}{4\pi g_0 (r')^2 k}$ $r' = r/\sqrt{k}$	1
2	 (a) The electric field E = - dV/dx ⇒ E = 16x - 4. The electric field is along x-direction. As the electric field is always perpendicular to the equipotential surface, the equipotential surface must be planes parallel to y-z plane. 	1
3	(c) $i_A = 2A$, $r_A = 2cm$, $\theta_A = 2\pi - \frac{\pi}{2} = \frac{3\pi}{2}$ $I_B = 3A$, $r_B = 4cm$, $\theta_B = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$ $B = \frac{\mu_0 I \theta}{4\pi R}$ $B_A = \frac{I_A}{I_B} \times \frac{\theta_A R_B}{\theta_B R_A} = \frac{6}{5}$ $B_B = \frac{I_A}{I_B} \times \frac{\theta_B R_A}{\theta_B R_A} = \frac{6}{5}$	1
4	(b) The net magnetic force on a current currying closed loop is zero. Here, $\overrightarrow{F_{BC}} = F$ $\overrightarrow{F_{AB}} = 0$ $\overrightarrow{F_{AB}} + F_{BC} + F_{AC} = 0$ $\Rightarrow F_{AC} = F_{BC} \cdot F_{AB} = 0$	1
5	(c) Dipole moment of circular loop is m. $m_1 = I.A = I.\pi R^2 \{ R = radius \text{ of } the loop \}$ $B_1 = \frac{\mu_0 I}{2R}$ moment becomes double \Rightarrow R becomes $\sqrt{2}$ R (keeping current constant) $m_2 = I.\pi \left(2R \right)^2 = 2.I\pi R^2 = 2m_1$ $B_2 = \frac{\mu_0 I}{2\left(2R\right)} = \frac{B_1}{2}$ $B_1 = 2\sqrt{B_2}$ $B_2 = \frac{\pi}{\sqrt{1-2}} = \frac{B_1}{\sqrt{1-2}}$	1
6	(a) For \sqrt{a} solenoid of n turns per unit length carrying current I, H=nI. $\therefore M = (\mu_r - 1)nI$ $M = (1000 - 1) \times 1000 \times 0.5$	1

	$M = 5 \times 10^5 Am^{-1}$	
	$M = 3 \times 10^{\circ} Am$ As magnetic moment, $m = M \times V$	
	$\therefore m = 5 \times 10^5 \times 10^{-3} = 500 Am^2$	
7	(c) Given $n=2\times10^4$; $I=4$ A	1
	Initially, the magnetic field at the centre of the solenoid is given as	
	$B_i = \mu_o nI = 4\pi \times 10^{-7} \times 2 \times 10^4 \times 4 = 32\pi \times 10^{-3} \text{ T}$	
	Initial magnetic flux through the coil is given as	
	$\phi_i = NBA$ = $100 \times 32\pi \times 10^{-3} \times \pi \times (0.01)^2 = \phi_i = 32\pi^2 \times 10^{-5} Tm^2$	
	Finally $I = 0 A$	
	$\mathbf{B}_{\mathrm{f}} = 0 \text{ or } \phi_{\mathrm{f}} = 0$	
	Induced charge,	
	$q = \Delta\phi /R = \phi_f - \phi_i / R = 32\pi^2 \times 10^{-5} / 10\pi^2 = 32 \times 10^{-6} C = 32\mu C$	
8	(d)The phase difference φ between current and voltage is given by	1
	$\tan \phi = \frac{X_C - X_L}{R}$	
	Or $\frac{X_C - X_L}{R} = \tan 45^\circ = 1$	
	Or $X_C = X_L + R$	
	Or $\frac{1}{2\pi fC} = 2\pi fL + R$	
	Or $C = \frac{1}{2\pi f (2\pi f L + R)}$	
9	(a)	1
10	(b) $K = \frac{hc}{-\phi} - \phi$ and that in the second case is	1
	$K_{\max_{2}} = \frac{hc}{\frac{\lambda}{2}} - \phi_{0} = \frac{2hc}{\lambda} - \phi_{0}$	
	But $K_{\text{max}_2} = 3K_{\text{max}_1}(\text{given})$ $\therefore \frac{2hc}{\lambda} - \varphi = 3\left(\frac{hc}{\lambda} - \varphi\right)$	
	$\frac{2hc}{\lambda} - \phi_0 = \frac{3hc}{\lambda} - 3\phi_0$	

$3\phi - \phi_{0} = \frac{3hc}{\lambda} - \frac{2hc}{\lambda}$ $2\phi_{0} = \frac{hc}{\lambda} or \phi_{0} = \frac{hc}{2\lambda}$ 11 (a) Explanation: Kinetic energy of any charge q accelerated by V volt, K = qV $=> K_{0} = 2eV, K_{p} = eV$ At distance of closest approach, K=U Let atomic number of target nucleus be Z For α -particle, $2eV = \frac{2Ze^{2}}{4\pi s_{0}r'}$ Hence $r' = r$ 12 (c) For Lyman Series wavelength will be longest when the electron has transition from n=2 to n=1 level. $=>1 = R\left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right)$ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $=>1 = R\left(\frac{1}{2} - \frac{1}{3^{2}}\right)$ Hence, $-\frac{1}{8} = \frac{5}{27}$ 13 (a) 14 (b) 15 (c)	
11 (a) Explanation: Kinetic energy of any charge q accelerated by V volt, K = qV $ => K_a = 2eV, K_p = eV $ At distance of closest approach, K=U Let atomic number of target nucleus be Z $ For \alpha - particle, 2eV = \frac{2Ze^2}{4\pi s_0 r'} $ For proton, $eV = \frac{Ze}{4\pi s_0 r'}$ Hence $r' = r$ $ 12 (c) $ For Lyman Series wavelength will be longest when the electron has transition from n=2 to n=1 level. $ => \lambda = R(\frac{1}{1^2} - \frac{1}{2^2}) $ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $ => \lambda = R(\frac{1}{2} - \frac{1}{3^2}) $ Hence, $\lambda = \frac{5}{8} = \frac{5}{27}$ $ 13 (a) $ $ 14 (b) $	
11 (a) Explanation: Kinetic energy of any charge q accelerated by V volt, K = qV $ => K_a = 2eV, K_p = eV $ At distance of closest approach, K=U Let atomic number of target nucleus be Z $ For \alpha - particle, 2eV = \frac{2Ze^2}{4\pi s_0 r'} $ For proton, $eV = \frac{Ze}{4\pi s_0 r'}$ Hence $r' = r$ $ 12 (c) $ For Lyman Series wavelength will be longest when the electron has transition from n=2 to n=1 level. $ => \lambda = R(\frac{1}{1^2} - \frac{1}{2^2}) $ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $ => \lambda = R(\frac{1}{2} - \frac{1}{3^2}) $ Hence, $\lambda = \frac{5}{8} = \frac{5}{27}$ $ 13 (a) $ $ 14 (b) $	
Explanation: Kinetic energy of any charge q accelerated by V volt, K = qV $ => K_{\alpha} = 2eV, K_{p} = eV $ At distance of closest approach, K=U Let atomic number of target nucleus be Z $ For \ \alpha - particle, \ 2eV = \frac{2Ze^{2}}{4\pi s_{0}r} $ For proton, $eV = \frac{Ze^{2}}{4\pi s_{0}r'} $ Hence $r' = r$ $ 12 \qquad (c) $ For Lyman Series wavelength will be longest when the electron has transition from n=2 to n=1 level. $ => 1 = R \left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right) $ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $ => \frac{1}{B} = R \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right) $ Hence, $\frac{1}{B} = \frac{5}{27} = \frac{1}{2}$ Hence, $\frac{1}{B} = \frac{5}{27} = \frac{1}{2}$ Hence, $\frac{1}{B} = \frac{5}{27} = \frac{1}{2}$ Hence, $\frac{1}{B} = \frac{1}{2} = \frac{1}{2}$ Hence, $\frac{1}{B} = \frac{1}{2} = \frac{1}$	
Explanation: Kinetic energy of any charge q accelerated by V volt, K = qV $ => K_{\alpha} = 2eV, K_{p} = eV $ At distance of closest approach, K=U Let atomic number of target nucleus be Z $ For \ \alpha \text{-particle, } 2eV = \frac{2Ze^{2}}{4\pi s_{0}r} $ For proton, $eV = \frac{Ze^{2}}{4\pi s_{0}r'} $ Hence $r' = r$ $ 12 \qquad (c) $ For Lyman Series wavelength will be longest when the electron has transition from n=2 to n=1 level. $ => 1 = R \left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right) $ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $ => \frac{1}{B} = R \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right) $ Hence, $\frac{1}{B} = \frac{5}{27} = \frac{1}{2} $ Hence, $\frac{1}{B} = \frac{5}{27} = \frac{1}{2} = \frac{1}$	L
$=> K_{\alpha}=2eV, K_{p}=eV$ At distance of closest approach, K=U Let atomic number of target nucleus be Z For α-particle, $2eV=\frac{2Ze^{2}}{4\pi s_{0}r}$ For proton, $eV=\frac{Ze^{2}}{4\pi s_{0}r'}$ Hence $r'=r$ 12 (c) For Lyman Series wavelength will be longest when the electron has transition from n=2 to n=1 level. $=> 1 = R\left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right)$ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $=> 1 = R\left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right)$ Hence, $\frac{1}{2} = \frac{5}{27}$ 13 (a) 1 (b)	
Let atomic number of target nucleus be Z For α -particle, $2eV = \frac{2Ze^2}{4\pi s_0 r}$ For proton, $eV = \frac{Ze^2}{4\pi s_0 r'}$ Hence $r' = r$ 12 (c) For Lyman Series wavelength will be longest when the electron has transition from n=2 to n=1 level. $= > \frac{1}{2} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right)$ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $= > \frac{1}{8} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$ Hence, $\frac{1}{8} = \frac{5}{27}$ 13 (a) 1 (b)	
For α -particle, $2eV = \frac{2Ze^2}{4\pi s_0 r}$ For proton, $eV = \frac{Ze^2}{4\pi s_0 r'}$ Hence $r' = r$ 12 (c) For Lyman Series wavelength will be longest when the electron has transition from $n=2$ to $n=1$ level. $= > \frac{1}{L} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right)$ For Balmer Series wavelength will be longest when the electron has transition from $n=3$ to $n=2$ level. $= > \frac{1}{B} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$ Hence, $\frac{1}{B} = \frac{5}{27}$ 13 (a) 1 14 (b) 1	
For proton, $eV = \frac{2e^2}{4\pi s_0 r'}$ Hence $r' = r$ 12 (c) For Lyman Series wavelength will be longest when the electron has transition from n=2 to n=1 level. $=>\frac{1}{L}=R\left(\frac{1}{1^2}-\frac{1}{2^2}\right)$ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $=>\frac{1}{B}=R\left(\frac{1}{2^2}-\frac{1}{3^2}\right)$ Hence, $\frac{L}{B}=\frac{5}{27}$ 13 (a) 1 14 (b) 1	
For proton, $eV = \frac{2e^2}{4\pi s_0 r'}$ Hence $r' = r$ 12 (c) For Lyman Series wavelength will be longest when the electron has transition from n=2 to n=1 level. $=>\frac{1}{L}=R\left(\frac{1}{1^2}-\frac{1}{2^2}\right)$ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $=>\frac{1}{B}=R\left(\frac{1}{2^2}-\frac{1}{3^2}\right)$ Hence, $\frac{L}{B}=\frac{5}{27}$ 13 (a) 1 14 (b) 1	
For Lyman Series wavelength will be longest when the electron has transition from n=2 to n=1 level. $= > \frac{1}{L} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right)$ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $= > \frac{1}{B} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$ Hence, $\frac{L}{B} = \frac{5}{27}$ 13 (a) 1 (b)	
For Lyman Series wavelength will be longest when the electron has transition from n=2 to n=1 level. $=>\frac{1}{L}=R\left(\frac{1}{1^2}-\frac{1}{2^2}\right)$ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $=>\frac{1}{B}=R\left(\frac{1}{2^2}-\frac{1}{3^2}\right)$ Hence, $\frac{L}{B}=\frac{5}{27}$ 13 (a) 1 (b)	
from n=2 to n=1 level. $= > \frac{1}{L} = R \left(\frac{1}{1^2} - \frac{1}{2^2} \right)$ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $= > \frac{1}{B} = R \left(\frac{1}{2^2} - \frac{1}{3^2} \right)$ Hence, $\frac{1}{B} = \frac{5}{27}$ 13 (a) 14 (b)	
from n=2 to n=1 level. $=>\frac{1}{L} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right)$ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $=>\frac{1}{B} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$ Hence, $\frac{L}{B} = \frac{5}{27}$ 13 (a) 14 (b)	
$=>\frac{1}{L} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right)$ For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $=>\frac{1}{B} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$ Hence, $\frac{L}{B} = \frac{5}{27}$ 13 (a) 14 (b)	
For Balmer Series wavelength will be longest when the electron has transition from n=3 to n=2 level. $=>\frac{1}{B}=R\left(\frac{1}{2^2}-\frac{1}{3^2}\right)$ Hence, $\frac{L}{B}=\frac{5}{27}$ 13 (a) 1 14 (b) 1	
from n=3 to n=2 level. =>\(\frac{1}{2} = R\)\(\frac{1}{2^2} - \frac{1}{3^2}\) Hence,\(\frac{L}{B} = \frac{5}{27}\) 13 (a) 1 14 (b) 1	
$=>\frac{1}{B} = R\left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right)$ Hence, $\frac{L}{B} = \frac{5}{27}$ 13 (a) 14 (b)	
13 (a) 1 14 (b) 1	
13 (a) 1 14 (b) 1	
14 (b) 1	[
15 (c) 1	
16 (c) 1	
17 Resistance of heaters R1= $400/3 \Omega$, R2= $400/6 \Omega$	
When heaters are connected in series, current in circuit,	
$I = \frac{V}{R_1 + R_2} = \frac{200}{\frac{400}{2} + \frac{400}{6}} = 1A$	
Heat produced in 200V, 300 W heater per second	
$Q_1 = I^2 R_1 = (1)^2 \times \frac{400}{3} = 1 \ 33.33 J s^{-1}$	
Heat produced in 200 V and 600 W heater per second.	

	$Q_2 = I^2 R_2 = (1)^2 \times \frac{400}{6} = 66.66 J s^{-1}$	1
	Clearly heat produced in 300 W heater is more that produced in 600 W heater	
18	For total internal reflection at the vertical face, $i = i_c$ (if μ is minimum)	
	If r= angle of refraction of ray into the prism Clearly, $r + i_c = 90^{\circ}$	
		1
	r= 90° - i _c $\mu = \frac{\sin i}{\sin r} = \frac{\sin 45^{0}}{\sin (90 - i_{c})} = \frac{1}{\sqrt{2} \cos i_{c}}$ Also, $\mu = \frac{\sin i_{c}}{\sin i_{c}} = \sin i_{c} = \sqrt{2} \cos i_{c}$	1/2
	$\sin r \sin(90-i_c) \sqrt{2}\cos i_c$ Also $\mu = \frac{1}{2} = \sin i = \sqrt{2}\cos i$	/2
	$\frac{\sin i_C}{\sin i_C} = \frac{\sqrt{2} \cos i}{C}$	
	$\mid Or. tan_{c} = \sqrt{2}$	
	Hence $\sin i_c = \sqrt{\frac{2}{3}}$	
		1/2
	$\mu = \frac{1}{\sin i_c} = \sqrt{\frac{3}{2}}$	/2
19	Let phase difference be φ	
	$I = 4I_0\cos^2(\phi/2) = 4I_0/2 = 2I_0$	1/2
	$=> \phi = \pi/2$	
	Path difference = $\phi \lambda / 2\pi = \lambda / 4$	1/2
	\Rightarrow y= λ D/4d	1/2
	OR	1/2
	For λ_1 , $\delta_m = A$, $n_1 = \sqrt{3}$	
	For λ_2 , $\delta_m = 30^\circ$, $n_2 = ?$	
	Hence, $n_1 = \sqrt{3} = \frac{\sin(\frac{A+A}{2})}{\sin(\frac{A}{2})} = \frac{\sin A}{\sin \frac{A/2}{2}} = 2\sin^A \cos^A \cos^A \cos^A \cos^A \cos^A \cos^A \cos^A \cos^A \cos^A \cos$	
	$\binom{3m}{2}$ $\binom{3m}{2}$ $\binom{3m}{2}$	1
	$\frac{\sqrt{3}}{2} = \cos\frac{A}{2} \Rightarrow A = 60^{\circ}$	
	$\sin(\frac{60+30}{2})$ $\sin 45$	
	$n_2 = \frac{\sin(\frac{60+30}{2})}{\sin 30} = \frac{\sin 45}{\sin 30} = \sqrt{2}$	1
20	Energy of photon $2m\lambda c$	1
	(i) $\frac{\text{Energy of photon}}{\text{K.E.of electron}} = \frac{2m\lambda c}{h}$	
	$2 \times 9.11 \times 10^{-31} \times 10^{-9} \times 3 \times 10^{8}$	
	$=\frac{2\times9.11\times10^{-31}\times10^{-9}\times3\times10^{8}}{6.6\times10^{-34}}$	
	$=\frac{9110}{11}=9110:11$	
		1
	(ii) Any two features that cannot be explained by wave theory of light	
		I.

21	Centre-Tap Transformer Diode 1(D ₁) Centre A X B Diode 2(D ₂) FR Output Y Explanation	1
22	Equivalent capacitance = $(200/3)pF$ Voltage across $C_1 = 100V$ Voltage across $C_2 = 50V$ Charge across $C_1 = Charge$ across $C_2 = 10^{-8} C$	1 1/2 1/2 1/2 1
23	The three cells are in parallel and hence effective emf = $40/3$ V There will be no current in the branch having capacitor after complete charging Hence the charge on the capacitor q=CV= $200/3$ μ C	1
24	(a) Diagram Expression and Direction of B Expression and Direction of force per unit length Definition of ampere Or (b) (i) By connecting a small resistance in parallel with the galvanometer Derivation of S Effective resistance (ii) $I_s = \frac{\theta}{I}$, $V_s = \frac{I_s}{R}$ $I'_s = I_s + \frac{50}{100}I_s = \frac{3}{2}I_s$ $V'_s = \frac{I'_s}{2R} = \frac{3}{2}I_s = \frac{3}{4}V_s$ $V'_s = 0.75\% V_s$ So, V_s decreases by 25%.	1/2 1 1 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/
	50, 73 decreases by 2570.	

25	Diagram	1
	Derivation	1
	$\mathbf{M}_{12} = \mathbf{M}_{21}$	1
26	(a) $\lambda_1 \to IR$, $\lambda_2 \to radiowaves \lambda_3 \to X - rays$	1½
	$\lambda_2 > \lambda_1 > \lambda_3$	1/2
	(b) Figure	
		1
27	(a) Statement of Bohr's postulate of quantisation of angular momentum	
	Justification using de Broglie hypothesis	1/2
	Justification using de Brogne hypothesis	11/2
	(b) For third excited state, n=4	
	Now, the total number of possible spectral lines is given by the formula,	
	N=n(n-1)/2	
	On putting n=4	
	$\Rightarrow N=4(4-1)/2$	
	Hence, we get	1
	N=6	
28		1 1/2
	10	
	Binding energy per nucleon of lighter nuclei is small. In an attempt to get higher B.E/A, lighter nuclei undergo nuclear fusion.	1/2
	Saturation effect / short range nature of nuclear force.	1
29	(i)(b) Eyepiece acts as a simple microscope. It forms a virtual and erect final image.	
	$f_e = 6.25 \text{ cm}, v_e = -25 \text{ cm}$	
	$using \frac{1}{f_e} = \frac{1}{v_e} - \frac{1}{u_e}$	
		1
	we get, $u_e = -5cm$	
	(ii)(b)	

	$L = \mathbf{v}_0 + u_e \Longrightarrow \mathbf{v}_0 = L - u_e $	
	$L = V_0 + u_e \Longrightarrow V_0 = L - u_e $	
	$\Rightarrow v_0 = 15 - 5 = 10 \ cm$	
	$f_0 = 2 \text{ cm}$	
	$\frac{1}{f_o} = \frac{1}{v_o} - \frac{1}{u_o}$	1
	Substituting, we get $u_0 = -2.5 cm$	
	(iii)(a) $M = \frac{v_0}{u_0} (1 + \frac{D}{f_e}) = \frac{10}{2.5} (1 + \frac{25}{6.25}) = 20$	1
	(iv) (a)	
	OR	1
	(d)	
30	i) (c) Doping increases the resistivity of semiconductor	
	OR	
	Which of the following energy band diagram shows the n type semiconductor?	
	(d)	
	Conduction band (CB) 1 eV Impurity level Valance band (VB)	1
	ii) (b) $E_{min} = hC$	
	max	
	λ_{max} = 589 nm	1
	iii) (a) Width of the depletion region,	
	$d=V/E=0.4/10^6=4x10^{-7} \text{ m}$	
		1
	iv) (c) The equivalent circuit is	
		1
		1
L	7	l

After observing this circuit we get that,

 $i=10/2=5 \text{ mA}=i_2$

 $i_1=0 \text{ mA}$

31

Electric field at a Point on the axial line

The electric field at the point P due to +q placed at B is,

$$E_1 = \frac{1}{4\pi\epsilon_0} \frac{q}{(r-d)^2} \text{ (along BP)}$$

The electric field at the point P due to -q placed at A is,

$$E_2 = \frac{1}{4\pi\epsilon_0} \frac{q}{(r+d)^2} \text{ (along PA)}$$

1

Therefore, the magnitude of resultant electric field (E) acts in the direction of the vector with a greater, magnitude. The resultant electric field at P is

 $E=E_1+(-E_2)$

$$E = \frac{q}{4\pi\epsilon_0} \left[\frac{4rd}{\left(r^2 - d^2\right)^2} \right] \text{ along BP}$$

If the point P is far away from the dipole, then d≪r

$$E = \frac{1}{4\pi\epsilon_0} \frac{2p}{r^3} \ along \ BP$$

1

ii) Two point charges q and - q are located at point (0,0,-a) and (0,0,a).

$$V = rac{1}{4\piarepsilon_o AP} + rac{1}{4\piarepsilon_o BP} = rac{p}{4\piarepsilon_0 (z^2 - a^2)}$$

and The electrostatic potential at (x, y, 0)

$$V = \frac{1}{4\pi\epsilon_{\text{\tiny a}}}.\frac{\text{-}q}{\text{AQ}} + \frac{1}{4\pi\epsilon_{\text{\tiny a}}}.\frac{\text{+}q}{\text{BQ}} \qquad \begin{array}{c} \text{Since, AQ=BQ} \\ \text{We have, electric potential at (x,y,0)=0.} \end{array}$$

(2)

Potential at
$$(5,0,0)$$

$$V_1 = \frac{-q}{4\pi\varepsilon_0} \frac{1}{\sqrt{(5-0)^2 + (-a)^2}} + \frac{q}{4\pi\varepsilon_0} \frac{1}{\sqrt{(5-0) + a^2}} = \frac{-q}{4\pi\varepsilon_0} \sqrt{25 + a^2} = 0$$

Potential at point (-7, 0,0)

$$egin{align*} V_2 &= rac{-q}{4\piarepsilon_0} rac{1}{\sqrt{\left(-7-0
ight)^2 + a^2}} \ &+ rac{q}{4\piarepsilon_0} rac{1}{\left(-7-0
ight)^2 + a^2} = rac{-q}{4\piarepsilon_0} \cdot rac{1}{\sqrt{4a+a^2}} \ &+ rac{q}{4\piarepsilon_0} rac{1}{\sqrt{4a+a^2}} = 0 \ \end{array}$$

Work done $= \operatorname{Change} \times \operatorname{Potential} \left(V = \frac{W}{O} \right)$

Charge
$$\times$$
 $(V_2 - V_1)$ Charge \times 0 - 0
= 0 $W = 0$

OR

(b) (i)

Let σ be the surface charge density of the sheet. From symmetry, E on either side of the sheet must be perpendicular to the plane of the sheet having same magnitude at all points equidistant from the sheet.

We take a cylinder of cross-sectional area A and length 2 r as the Gaussian surface.

Net flux through the flat surface = EA + EA = 2EA

The flux through curved surface are zero because E and dA are at right angle,

: Total electric flux over the entire surface of cylinder

$$\phi_E=2EA$$

Total charge enclosed by the cylinder $q = \sigma A$

According to Gauss.s law $\phi_E = q/\epsilon_0$

 \therefore 2EA= σ A/ ϵ_0 or E= σ /2 ϵ_0

1

1

1

1

	ii) When no electric field is applied, the time period of oscillation is:	
	$T = 2\pi \sqrt{\frac{1}{g}}$	
		1
	When electric field is applied, T'	
	$=2\pi\sqrt{\frac{1}{g-a}} \qquad \qquad [a=\frac{qE}{m}=2.5]$	1
	solving above two equations T'=2.6 s	
	Therefore time taken for 25 oscillations = $25 \text{ T}' = 65 \text{ s}$	
32	a) (i) $X \rightarrow$ capacitor	1/2
	(ii) curve B → voltage	1½
	$curve C \rightarrow current$	
	curve A \rightarrow power	
	(iii) $X_c = \frac{1}{\omega C}$	1/2
	$X_c \alpha \frac{1}{\omega}$	1/2
	w and the second	
	(iv) Desiration of expression for the express	11/2
	(iv) Derivation of expression for the current Phase relation	1/2
	OR	
	(b) (i) Diagram	1
	Principle	1/2
		11/2
	Working E 22 1	
	(ii) $I_s = \frac{E_s}{R_s} = \frac{22}{440} = \frac{1}{20}A$	1/2
	$\eta = \frac{E_S I_S}{E_P I_P}$	1/2
	$90 \frac{22 \times \begin{pmatrix} 1 \\ 20 \end{pmatrix}}{20}$	
	$\frac{100}{100} = \frac{\sqrt{}}{220 \times I_P}$	
	$\Rightarrow I_p = 0.0056A$	1/2
	(iii) There is no change in magnetic field due to dc	1/2
33	(a) (i) Ray diagram	1
	Derivation of $\frac{n^2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$	2
	v u R	1
		1

(ii) $\frac{n^2 - \frac{n_1}{u}}{u} = \frac{\frac{n_2 - n_1}{R}}{R}$ where $n_1 = 1.5$, $n_2 = 1$, $u = -3$ cm, $R = -5$ cm	1/2
Substituting and simplifying, we get $v = -2.5$ cm	
P 1 0 C 3 cm 2 cm	1/2
(Award full marks for correct answer without figure)	
OR	
(b)	
Huygen's principle	1
DiagramNCERT Fig. 10.15	1
Application to diffraction pattern: All the points of incoming wavefront (parallel to plane	
of slit) are in phase at plane of slit. However, the contribution of the secondary wavelets	1
from different points, at any point on the observation screen have phase differences	
dependent on the corresponding path differences. Total contribution at any point on screen	
is sum total of contribution due to all secondary wavelets with proper phase difference.	
Intensity distribution	
	1
Explanation for secondary maxima to be weaker in intensity	1